Robust Localization of Persons Based on Learned Motion Patterns
نویسندگان
چکیده
Whenever people move through their environments they do not move randomly. Instead, they usually follow specific trajectories or motion patterns corresponding to their intentions. Knowledge about such patterns may enable a mobile robot to robustly keep track of persons in its environment. This paper proposes a technique to derive a Hidden Markov Model (HMM) from learned motion patterns of people. This HMM is able to estimate the current and future positions of persons given knowledge about their intentions. Experimental results obtained with a mobile robot using laser and vision data collected in a typical office building with several persons illustrate the reliability and robustness of the approach. We also demonstrate that our model provides better estimates than an HMM directly learned from the data.
منابع مشابه
Utilizing Learned Motion Patterns to Robustly Track Persons
Whenever people move through their environments they do not move randomly. Instead, they usually follow specific trajectories or motion patterns corresponding to their intentions. Knowledge about such patterns may enable a mobile robot to robustly keep track of the position of the persons in its environment or to improve its behavior. This paper proposes a technique for learning collections of ...
متن کاملRobust Motion Planning via Perception-Aware Multiobjective Search on GPUs
In this paper we describe a framework towards computing well-localized, robust motion plans through the perception-aware motion planning problem, whereby we seek a low-cost motion plan subject to a separate constraint on perception localization quality. To solve this problem we introduce the Multiobjective PerceptionAware Planning (MPAP) algorithm which explores the state space via a multiobjec...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملPerception-Aware Motion Planning via Multiobjective Search on GPUs
In this paper we describe a framework towards computing well-localized, robust motion plans through the perception-aware motion planning problem, whereby we seek a low-cost motion plan subject to a separate constraint on perception localization quality. To solve this problem we introduce the Multiobjective PerceptionAware Planning (MPAP) algorithm which explores the state space via a multiobjec...
متن کاملA quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates
Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...
متن کامل